

Внешний сенсор загазованности с открытым протоколом MODBUS для обнаружения угарного газа CO: <u>SGW CO 0NX M</u>

Рис.1 SGWCO0NXM: сенсор загазованности CO. Диапазон измерений: 0... 500 ppm.

Предназначен для установки в зонах, классифицированных как не взрывоопасные.

Описание:

А настройка диапазона шкалы: SPAN

В коннектор для настройки

С светодиод LED

D коннектор для подключения съемного чувствительного элемента

Е съемный терминал (выход 4..20 мА)

3: +V= 2: выход (**OUT**) 1: **GND**

F красный/зеленый светодиод: статус состояния сенсора

G не используется

Н настройка номера сенсора; поворотный переключатель: R-H: настройка единиц

L-Н: настройка десятков

L дип-переключатель: настройка данных сенсора

М красный светодиод: не используется

N желтый светодиод: ошибка

О зеленый светодиод: нормальная работа

Р кнопка перезапуска

Q терминал связи

Установка

Прибор необходимо устанавливать чувствительным элементом вниз, это обеспечивает защиту сенсора от проникновения влаги и пыли (см. рис).

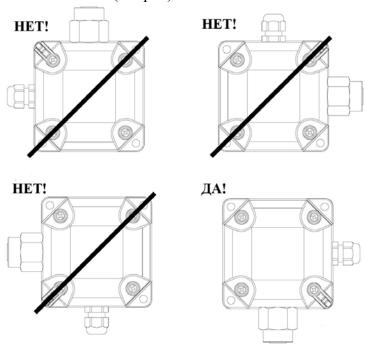


Рис.2: Правильная установка сенсора

При проектировании расположения системы учитывайте такие факторы, как:

- Вес газа (легче или тяжелее, чем воздух)
- Скорость газа (поток)
- Наличие дверей, окон, конфигурация и высота потолка, вытяжка
- Тип помещения

Время срабатывания сенсора напрямую связано с расположением сенсоров в помещении, и типом газа для обнаружения.

Более того, сенсор на **CO** вешается на высоте **1.5-1.8 м** от пола, на уровне головы, поскольку угарный газ по весу приблизительно равен массе воздуха.

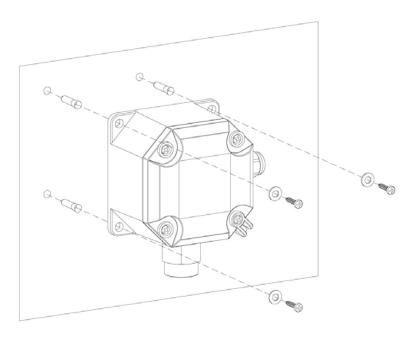


Рис.3 Установка сенсора

Электрическое подсоединение

Электрическое подключение прибора должно осуществляться через блок связи \mathbf{Q} с интерфейсом Modbus в соответствии со схемой подключения, **рис.4**.

Сенсор запитывается на 12..24В (вход 4-5). Серийный выход RS485 (вход 2-3) используется для подключения сенсоров к блоку контроля. Каждый сенсор определяется по номеру, который задается на каждом сенсоре с помощью поворотных переключателей **H** и **I**. Сенсоры могут иметь не последовательную нумерацию, но не должны иметь один и тот же номер. За более подробной информацией обратитесь к инструкции, прилагаемой к блоку контроля.

Чтобы правильно осуществить электрическое соединение, ознакомьтесь с рис. 4.

Замыкающий резистор цепи 120 Ом

На концах цепи на **RS485 bus** (те, которые закольцовывают оба конца цепи системы **RS485**, см. пример на **puc.5** и **puc.6**) должны быть активированы внутренние оконечные резисторы на **120 Ом**. Резистор активируется с помощью дип-переключателя **L**.

Не активируйте более двух резисторов на одной системе.

Внимание!

- изучите руководство пользователя к блоку контроля для выбора необходимого кабеля для подключения по линии RS485.
- установка данного устройства должна производиться квалифицированным персоналом в соответствии с действующими техническими требованиями и стандартами
- перед выполнением установки платы убедитесь, что система обесточена
- вся полнота ответственности за безопасность системы лежит на персонале, который осуществляет монтаж и электрическое подсоединение системы в соответствии с местными требованиями и действующими стандартами.

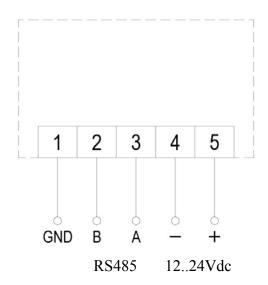


Рис.4: электрическое подключение

Электрическое соединение осуществляется в помощью четырехжильного экранированного кабеля с минимальным сечением жилы $0.5~{\rm mm}^2$ (витая пара).

Возможно расположение кабеля шины RS485 и кабеля питания в разных каналах, при этом:

- кабель шины RS485 витая пара 2*0,5 мм² экранированный (марка кабеля КИПЭВ или аналог),
- кабель питания 2*1,5 мм².

Окончательное сечение кабеля рассчитывается в зависимости от длины трассы и потери напряжения. ВАЖНО: Питание сенсора от источника 24Vdc помогает существенно уменьшить сечение провода.

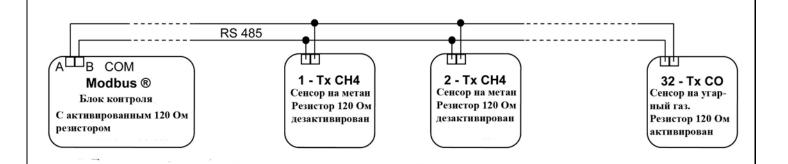


Рис.5 Пример активирования резистора: Блок контроля-сенсор

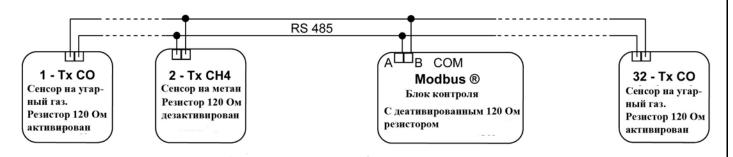


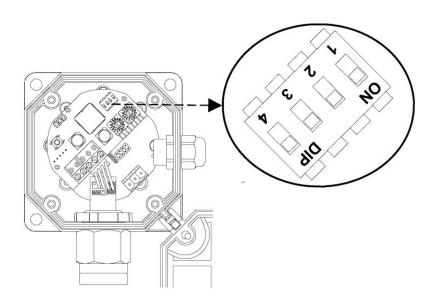
Рис.6 Пример активирования резистора: сенсор-сенсор

Регистр и таблица ошибок:

4хххх РЕГИСТР	Описание	Диапазон	3начение	Бит	R/W	Функция ModBus
40000	Тест	Не используется	0	2	R	3
40001	Версия ПО	0x0000xFFFE 0xFFFF=E2 Error	MsWord (Big Endian)	2	_	
40002		0x0000xFFFE 0xFFFF=E2 Error	LsWord (Big Endian)	2	R	3
40003	Имя устройства (по умолчанию)	0x0000xFFFE 0xFFFF=E2 Error	0x49 (I) 0x4D(M) (Big Endian)	2	2/11	2.6
40004		0x0000xFFFE 0xFFFF=E2 Error	0x42 (B) 0x30(0) (Big Endian)	2	R/W	3, 6
40005	Соединение	Не используется	0	2	R	3
40006	Адрес	Не используется	0	2	R	3
40007	Сенсор газа	09999 0xFFFF=E2 Error	Unit=Day (день)	2	R/W	3, 6
40008	Тип газа	0x000x03	0x00=CH4 (метан) 0x11=GPL (сжиженный газ) 0x01=CO (угарный газ) 0x10 (пары бензина)	1	R	3
40009	Красный светодиод	012	0=Нет аварии 1=Предупреждение 2=Авария	1	R/W	3, 6
40010	Ошибка материнской платы	01	0=Нормальная работа 1=Ошибка	1	R	3
40011	Уровень газа в ADC	04095	0=0,8 Vcc=0%LEL, ppm 4095=4,0 Vcc=100%LEL, ppm	2	R	3
40012	Подача напряжения на материнскую плату	04095	0=0,0 Vcc 4095=5,0 Vcc	1	R	3
40013	Полная шкала	01	0=100% 1=50%	1	R	3

Error	Описание	Бит
_		
0x01	ILLEGAL_FUNCTION=Функция не распознана	1
0x02	ILLEGAL_DATA_ADDR=Полученный адрес не верный	1
0x03	ILLEGAL_DATA_VALUE=Полученное значение в поле данных не верное	1
0xFF	ILLEGAL_CRC_VALUE=Адрес CRC не верный	1

Crc	Описание	Бит
0x0000 0xFFFF	Порядок бит в CRC в little-Endian. Тх устройства перед малым значением байта, затем высокий байт	2


Коммуникация

- Канал связи: RS485
- Параметры: 19200, 8, N, 1.
- Протокол: Modbus (см. <u>www.modbus.org</u>)
- CRC это 16 битный (2 бита) сигнал от 0 x 0000 до 0 x FFFF
- CRC команда распознается как 'Little-Endian', т.е. От младшего байта в старшему.
- Минимальное время реагирования на команду от ведущего устройства к подчиненному составляет 250мс.
- Для получения большей информации о регистрах, см. табл. Данных регистра.
- Более подробная информация о работе протокола Modbus см. официальный сайт www.modbus.org.

Настройка

Настройка **DIP-переключателей**

Сенсор оснащена 4 **DIP-переключателями** (**puc.1**). Крайний, 4-й dip-переключатеь отвечает за активацию/ дезактивацию резистора на 120 Ом. В комплект поставки для переключения dip-переключатлей идет специальный ключ для настройки.

Настройка платы под тип газа:

Переключатель 1 и 2 позволяют подстроить плату под тип газа сенсора, на который она устанавливается:

Метан

Сжиженный газ

Пары бензина

Угарный газ

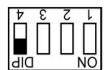
Настройка шкалы

Переключатель под номером 3 предназначен для настройки шкалы сенсора:

Полная шкала:

100% НКПР (СН4, GPL, пары бензина)

500 ррт (угарный газ)


Полная шкала:

50% НКПР (СН4, GPL, пары бензина)

250 ррт (угарный газ)

Настройка резистора цепи (120 Ом).

Переключатель под номером 4 позволяет активировать/дезактивировать конечный резистор на 120 Ом. Резистор активируется только, если устройство является конечным (крайним) элементом в шлейфе **BUS**. Не активируйте более двух резисторов в системе (см. Рис. 5 и 6).

Активирован

Дезактивирован

Внимание!

Заводская настройка сенсоров предполагает уже переключатели 1,2,3 включенными в соответствии с типом газа, который распознает сенсор. Не рекомендуется менять настройку этих переключателей — неверная настройка может привести к выходу из строя сенсора.

Переключатель 1 — Настройка типа газа

Не менять!

Переключатель 2 — Настройка типа газа

Не менять!

Переключатель 3 — Настройка диапазона шкалы

Не менять!

Переключатель 4 — Настройка конечного резистора (120 Ом).

Позволяет включить либо выключить конечный резистор на 120 Ом.

Настройка поворотного переключателя

Плата Modbus оснащена двумя поворотными переключателями (А и В на рис.1), вращение можно осуществить с помощью отвертки. Поворотный переключатель предназначен для присвоения сенсору в системе номера, который будет распознаваться блоком контроля.

Переключатель А:

Установка единиц от 0-9.

Переключатель В:

Установка десятков от 0-9.

Пример:

Устанавливаем на переключателе А: 2

На переключателе В: 1

Получаем номер сенсора: 12

Внимание!

Один и тот же номер нельзя присваивать разным сенсорам, подключенным к системе RS485. Номера выставляются: от 01 до 32.

Работа

Данный сенсор определяет концентрацию угарного газа (CO) с тремя выходными каналами на 4.0 — 20.0 мА.

Сенсор состоит из защитного пластикового корпуса, в котором расположены электросхема и чувствительный элемент, который защищен специальным фильтром, закрепленным в нижней части корпуса (в соответствии с инструкцией по сборке).

Сам чувствительный элемент на угарный газ является электрохимической чувствительной ячейкой, которая также чувствительна к содержанию ацетилена, водорода и окиси азота, поэтому пользователь должен учитывать эффект перекрестной чувствительности сенсора к другим газам.

Фаза стабилизации начинается сразу после подключения питания к сенсору. Определить, что сенсор запитывается можно по световому индикатору, который загорится красным, **F**. В ходе фазы стабилизации сенсор не может определять концентрацию газа. После окончания фазы стабилизации световой индикатор загорится зеленым, что будет означать, что сенсор готов к работе.

Сенсор имеет встроенный микропроцессор, который постоянно проверяет работу и заряд электрохимической ячейки. В различных ситуациях он передает сигналы, в результате чего срабатывает световой индикатор С:

Постоянно горящий красный светодиод (около минуты): обозначает фазу разогрева сенсора (только при включении).

Мигающий красный: обозначает, что сенсор вышел из строя, его необходимо заменить.

Горящий зеленый: сенсор работает исправно. **Светодиод не горит**: ошибка работы сенсора.

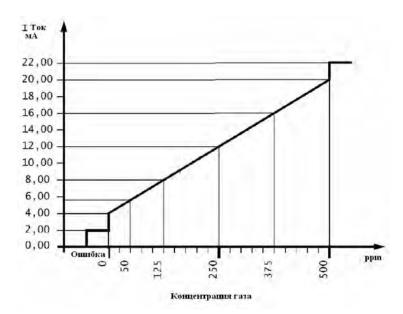
Внимание!

Обратите внимание, что корректно сенсор работает только при наличии кислорода О2. Поэтому чтобы сенсор правильно давал показания, необходимо убедиться, что содержание кислорода соответствует атмосферному (20,9% объема).

Как при нормальной работе, так и при обслуживании сенсоров необходимо учитывать эффект перекрестной чувствительности прибора. В случае вопросов, обращайтесь к поставщику оборудования.

Концентрация — соотношение

Сенсор способен «преобразовывать» уровень концентрации газа в соответствующий импульс тока, который поступает на блок контроля.


Преимущество такой характеристики в том, что она обеспечивает большую защиту от воздействия внешних факторов, а также учитывает погрешность степени защиты электрического кабеля.

Необходимое соотношение концентрации газа и значением электрического импульса указано в графике ниже.

<u>Ошибка</u>: в случае, когда чувствительный элемент в сенсоре поврежден, система распознает ошибку, значение которой будет равно 2 мА.

Благодаря такой характеристике возможно понять в каком случае ошибка поступает от чувствительного элемента, а в каком ошибка в электрическом подсоединении, что на блоке контроля определяется как 0 мА. Другими словами, данная характеристика обеспечивает детальную диагностику неисправности сенсора, что облегчает решение проблемы.

<u>Избыточная концентрация</u>: в случае, когда концентрация газа превышает допустимый порог, на блок поступает сигнал 22 мА. Это позволяет сенсору передать на блок обнаружение загазованности.

В таблице приведено соотношение концентрации газа (ppm) и выходным сигналом (мА).

ppm	Выход, мА
Ошибка электрического соединения	0.0
Ошибка сенсора	2.0
0	4.0
125	8.0
250	12.0
500	20.0
Избыточная концентрация (>500 ppm)	22.0

Таблица 1

Внимание!

На блок поступит как сигнал об ошибке, так и сигнал об избыточной концентрации газа.

Обслуживание

Периодическая поверка:

для контроля исправной работы сенсора необходимо проводить периодическую поверку сенсора каждые 6 месяцев в соответствии с приведенной ниже инструкцией.

В случае, когда процедура завершена некорректно, необходимо перезапустить нормальную работу сенсора в соответствии с приведенной ниже инструкцией.

В обоих случаях обязательно подавать газ на сенсор с помощью специального калибровочного набора.

Нормальные операции по обслуживанию (кроме периодической поверки и калибровки, описанных в параграфе «Поверка») сенсоров заключаются в следующих действиях:

- · Определите тип газа и концентрацию токсичных смесей, как SO2, NO2, NO и H2S, которые могут постоянно воздействовать на сенсор и вывести его из строя.
- Осмотрите каждый прибор и состояние его компонентов
- · Обратите особое внимание на наличие пыли, грязи, нагара, конденсата, которые могут влиять на корректную работу сенсора.
- Осмотрите, чтобы все соединения были в нормальном состоянии
- Осмотрите корпус сенсора на наличие повреждений и т.п.

Лицо, ответственное за управление системой контроля загазованности несет обязательство осуществлять все необходимые периодические проверки и контроль исправности системы в соответствии с нормами и стандартами.

Временной интервал между поверкой и калибровкой должен определяться пользователем в соответствии с требованиями, применяемыми в каждой стране. Тем не менее, этот срок регламентирован как минимум:

- каждые три месяца для систем, установленных в зонах, классифицированных как зона 1 по уровню степени загрязненности.
- -каждые шесть месяцев для систем, установленных в зонах, классифицированных как зона 2 по уровню степени загрязненности.

Внимание!

Обратите внимание, что угарный газ (CO) является токсичным газом, поэтому необходимо предусмотреть безопасные условия работы для персонала, который работает в помещении и обслуживает его.

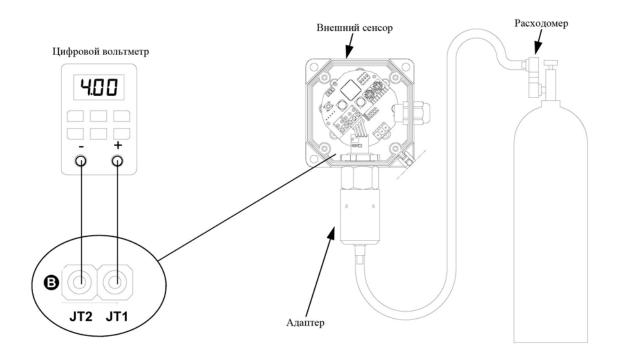


Рис.7 Испытание сенсора с использованием газовых смесей

Настройка

Сенсор не требует никакой настройки, кроме периодического обслуживания (поверки и проверки), как описано в параграфе «Поверка».

Поверка

Периодическая поверка сенсора предназначена для контроля его эффективной работы, а также контроля точности его показаний.

Когда поверка проведена верно, никакой дальнейшей настройки не требуется.

Поверка сенсора проходит следующим образом: на сенсор подается газ с известной концентрацией из сертифицированного баллона при условиях, приведенных в инструкции ниже. Сенсор определяет концентрацию газа и рассчитывает значение **Span**, она должна соответствовать концентрации баллона, при этом напряжение тока, определяемое мультиметром, также должно соответствовать Таблице 1, приведенной в параграфе **Концентрация** — **соотношение**.

Предварительные действия:

Прежде чем начать замер значения **Span**, подключите вольтметр **VDC** с автоматической полной шкалой к клеммам сенсора **JT2(-)** и **JT1(+)**, как показано на **рис.** 7.

Внимание!

Сенсор должен работать минимум 48 часов на свежем воздухе.

Определение значения Span:

- Сенсор должен работать минимум 48 часов на свежем воздухе.
- а. Убедитесь, что без подачи газа на сенсор, вольтметр показывает значение напряжения 0 Вольт.
- **b.** С помощью специального адаптера подать газ на сенсор, как показано на **рис.** 7. Газ должен храниться в баллоне с сертифицированной концентрацией (рекомендуется **200 ppm**).

Скорость потока газа на сенсор должна быть равна 0.2 л/мин в течение всего теста.

Положение сенсора при подачи газа – строго вертикально.

С момента подачи газа на сенсор, напряжение тока на мультиметре будет постепенно увеличиваться до стабилизации, а после примерно 4 минут будет равно необходимому значению.

с. Рассчитайте значение Span по схеме:

V Span(v)= 3.8 x CIy (известная концентрация) ppm / 500 ppm

Где: **СІу** - известная концентрация: концентрация поверочного газа, поступающего с помощью адаптера на сенсор. Данные о проверочном газе содержатся в сертификате к баллону.

- **d.** Значение напряжения может отличаться от значения рассчитанного по формуле в пределах ± 0.3 В.
- **e.** Убедитесь, что значение концентрации на блоке контроля равняется значению поверочного газа, и не превышает порог ± 10 ppm.
- В случае, если значение, определяемое сенсором не равно значению поверочного газа, и /или не совпадает с расчетом по формуле, необходимо откалибровать значение Span, как указано в следующем параграфе.

Калибровка (настройка)

Термин калибровка относится к процедуре настройки значения **Span**, которое настраивается с помощью специального инструмента, который задает через блок контроля выходное значение напряжения в пределах заданной шкалы.

Все погрешности учитываются, и никак не отображаются на работе сенсора, поскольку калибруется прибор расчетом из двух значений - Ноль и Span (Диапазон шкалы).

Внимание!

Сенсор должен работать минимум 48 часов в помещении с чистым воздухом.

Предварительные действия:

Прежде чем приступить к калибровке сенсора, подключите вольтметр VDC с автоматической полной шкалой к клеммам сенсора **JT2(-)** и **JT1(+)**, как показано на **рис.** 7.

Калибровка значения Span:

- а. Убедитесь, что без подачи газа на сенсор, вольтметр показывает значение напряжения 0 Вольт.
- **b**. С помощью специального адаптера подать газ на сенсор, как показано на **рис.** 7. Газ должен храниться в баллоне с сертифицированной концентрацией (рекомендуется **200 ppm**).

Скорость потока газа на сенсор должна быть равна 0.2 л/мин в течение всего теста.

С момента подачи газа на сенсор, напряжение тока на мультиметре будет постепенно увеличиваться до стабилизации, а после примерно 4 минут будет равно необходимому значению.

с. Рассчитайте значение Span по схеме:

V Span(v) = 3.8 x CIy известная концентрация (ppm) / 500 ppm

Где: **СІу** - известная концентрация: концентрация поверочного газа, поступающего с помощью адаптера на сенсор. Данные о проверочном газе содержатся в сертификате к баллону.

e. Подстройте триммер **Span** (**A на рис.1**) пока значение напряжения на вольтметре не будет равно значению, рассчитанному в п. **d**.

Если процедура не удалась, выдержите прибор на воздухе, а затем повторите шаги, начиная с п.а.

- ${f f}$. Убедитесь, что сенсор передал на блок контроля концентрацию (в ppm), равную концентрации поверочного газа в пределах допустимой погрешности ± 10 ppm.
- **g**. Закрепите крышку сенсора и зафиксируйте ее винтами, так, чтобы она герметично прилегала к базовой части сенсора.

Внимание!

- Этот шаг можно повторять необходимое количество раз прежде, чем завершить калибровку.
- Настоятельно рекомендуется проводить проверку после калибровки, чтобы избежать дальнейших проблем в работе сенсора.
- Если значение Span (диапазон шкалы) или Zero (ноль) не соответствует необходимым показателям после проверки, сенсор будет считаться неисправным, его необходимо передать продавцу на ремонт/замену.

Внимание!

Рекомендуется использовать угарный газ (СО) газ с концентрацией 200 ррт.

Не проводите тест с концентрированным газом. Поверочный газ должен поставляться только в сертифицированных баллонах смеси газа с кислородом.

Для проведения теста необходимо аккуратно снять крышку прибора, при соблюдении всех требований по безопасности.

Когда необходимо выключить прибор, для проведения его обслуживания/ поверки, необходимо активировать запасную систему контроля безопасности.

Дополнительные меры по обеспечению безопасности во время проведения поверки сенсоров могут включать в себя обеспечение большей вентиляции помещения — систем принудительного вентилирования.

Прежде чем приступать к обслуживанию прибора, убедитесь в отсутствии в помещении токсичных газов:

- а. аккуратно снимите крышку прибора
- **b.** проведите калибровку/ поверку сенсора
- с. только удостоверившись в исправной работе сенсора закрепите крышку прибора с помощью винтов на базовой части корпуса.

Работы по обслуживанию никак не должны отражаться на снижении контроля безопасности на объекте. В случае сомнения, обратитесь к продавцу.

Никогда не проводите работы по обслуживанию приборов, если вы не уверены в том, что помещение безопасно.

Обслуживающий персонал должен иметь квалификацию на проведение работ, а также несет ответственность за надлежащие исполнение функций по обеспечению безопасности на объекте. Настоятельно рекомендуется перед эксплуатацией системы контроля безопасности удостовериться, что организация работы соответствует всем требования и нормам страны.

Условия работы

Данный сенсор предназначен для определения концентрации угарного газа в помещении. В таблице ниже приведены данные о перекрестной чувствительности сенсора, что может повлиять на показания сенсора.

	Концентрация ррт	Значение (ррт СО)
Угарный газ	100	100
Окись азота	50	8
Водород	100	20
Этанол	2000	5
Ацетилен	40	80

Таблица 2

Время ответа Т90: менее 50 сек Рабочая температура: -10 °C \div 40 °C Допустимая влажность: $20 \div 80$ РН Рабочее давление: $80 \div 1100$ кПа Питание: 12B-10%...24B+10%

Мощность: 160 мА Время разогрева: 1 мин. Время стабилизации: 48 ч.

Сопротивление на 12В: макс. 300 Ом

Степень защиты: IP54 Размеры:124*134*67

Вес: 374 г.

Примеси

Присутствие бензола и гексана приводит к разрешению пластикового корпуса. Примеси как SO2, NO2, NO, H2S могут вывести сенсор из строя.

Световые индикаторы

Устройство оснащено 4 индикаторами, обозначенными на рис.1.

Зеленый индикатор: (О на рис.1)

обозначает нормальную работу сенсора с интерфейсом Modbus.

Мигающий желтый (N на рис.1)

обозначает ошибку сенсора с интерфейсом Modbus.

Мигающий желтый (N на рис.1)

обозначает не корректную работу сенсора с интерфейсом Modbus.

Красный (М на рис.1)

не используется

Двойной красный-зеленый светодиод (F на рис.1)

красный: сенсор находится в фазе разогрева

зеленый: нормальная работа

Красный (С на рис.1)

чередующийся статус светодиода сенсора

Перезапуск

Для перезапуска сенсора нажмите кнопку перезапуск, Р на рис.1.

Устранение неполадок

Проблема: Текущее показание сенсора, читаемое на блоке равно 0.

Возможная причина:

ошибка соединения сенсора и блока.

Решение:

Проверьте все соединения между сенсором и блоком контроля. Убедитесь, что крышка плотно и правильно зафиксирована, не переживает контакты. Используйте мультиметр для определения напряжения на клеммах сенсора (+ и -).

Проблема:

Концентрация газа, замеренная сенсором и переданная на блок не соответствует необходимым параметрам.

Возможная причина:

Сенсор необходимо повторно откалибровать.

Решение

Прочитайте инструкцию в соответствующих параграфах о калибровке и поверке сенсора и выполните процедуру. Если проблема не устраняется, обратитесь к продавцу.

Возможная причина:

Фильтрующий элемент сенсора загрязнен или слишком влажный.

Решение:

Удалите загрязнение и / или следы влаги. Если проблема не устранена, обратитесь к продавцу.

Запасные части

Сменный чувствительный элемент на угарный газ (СО).

Аксессуары

Устройство (адаптер) для калибровки, которое обеспечивает правильную подачу газа на сенсор. Обратитесь к продавцу, если необходимо.